题目描述

给定一个二叉树的根节点 root ,返回它的 中序 遍历。

题解

方法一:递归

思路与算法

首先我们需要了解什么是二叉树的中序遍历:按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
inorder(root, res);
return res;
}

public void inorder(TreeNode root, List<Integer> res) {
if (root == null) {
return;
}
inorder(root.left, res);
res.add(root.val);
inorder(root.right, res);
}
}

复杂度分析

  • 时间复杂度:O(n),其中 nn 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。空间复杂度:O(n)。空间复杂度取决于递归的栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。

方法二:栈

思路和算法

方法一的递归函数我们也可以用迭代的方式实现,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其他都相同,具体实现可以看下面的代码。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
Deque<TreeNode> stk = new LinkedList<TreeNode>();
while (root != null || !stk.isEmpty()) {
while (root != null) {
stk.push(root);
root = root.left;
}
root = stk.pop();
res.add(root.val);
root = root.right;
}
return res;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 nn 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
  • 空间复杂度:O(n)。空间复杂度取决于栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。

方法三:Morris中序遍历

思路和算法

Morris 遍历算法是另一种遍历二叉树的方法,它能将非递归的中序遍历空间复杂度降为 O(1)。

Morris 遍历算法整体步骤如下(假设当前遍历到的节点为 x):

  1. 如果 x 无左孩子,先将 xx 的值加入答案数组,再访问 x 的右孩子,即 x = x.right。
  2. 如果 x 有左孩子,则找到 x 左子树上最右的节点(即左子树中序遍历的最后一个节点,x 在中序遍历中的前驱节点),我们记为 predecessor。根据 predecessor 的右孩子是否为空,进行如下操作。
    • 如果 predecessor 的右孩子为空,则将其右孩子指向 x,然后访问 x 的左孩子,即 x = x.left。
    • 如果 predecessor 的右孩子不为空,则此时其右孩子指向 x,说明我们已经遍历完 xx 的左子树,我们将 predecessor 的右孩子置空,将 x 的值加入答案数组,然后访问 x 的右孩子,即 x = x.right。
  3. 重复上述操作,直至访问完整棵树。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
TreeNode predecessor = null;

while (root != null) {
if (root.left != null) {
// predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
predecessor = root.left;
while (predecessor.right != null && predecessor.right != root) {
predecessor = predecessor.right;
}

// 让 predecessor 的右指针指向 root,继续遍历左子树
if (predecessor.right == null) {
predecessor.right = root;
root = root.left;
}
// 说明左子树已经访问完了,我们需要断开链接
else {
res.add(root.val);
predecessor.right = null;
root = root.right;
}
}
// 如果没有左孩子,则直接访问右孩子
else {
res.add(root.val);
root = root.right;
}
}
return res;
}
}

复杂度分析

  • 时间复杂度:O(n),其中 nn 为二叉搜索树的节点个数。Morris 遍历中每个节点会被访问两次,因此总时间复杂度为 O(2n)=O(n)。
  • 空间复杂度:O(1)。