题目描述
给定一个二叉树的根节点 root
,返回它的 中序 遍历。
题解
方法一:递归
思路与算法
首先我们需要了解什么是二叉树的中序遍历:按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| class Solution { public List<Integer> inorderTraversal(TreeNode root) { List<Integer> res = new ArrayList<Integer>(); inorder(root, res); return res; }
public void inorder(TreeNode root, List<Integer> res) { if (root == null) { return; } inorder(root.left, res); res.add(root.val); inorder(root.right, res); } }
|
复杂度分析
- 时间复杂度:O(n),其中 nn 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。空间复杂度:O(n)。空间复杂度取决于递归的栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。
方法二:栈
思路和算法
方法一的递归函数我们也可以用迭代的方式实现,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其他都相同,具体实现可以看下面的代码。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| class Solution { public List<Integer> inorderTraversal(TreeNode root) { List<Integer> res = new ArrayList<Integer>(); Deque<TreeNode> stk = new LinkedList<TreeNode>(); while (root != null || !stk.isEmpty()) { while (root != null) { stk.push(root); root = root.left; } root = stk.pop(); res.add(root.val); root = root.right; } return res; } }
|
复杂度分析
- 时间复杂度:O(n),其中 nn 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
- 空间复杂度:O(n)。空间复杂度取决于栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。
方法三:Morris中序遍历
思路和算法
Morris 遍历算法是另一种遍历二叉树的方法,它能将非递归的中序遍历空间复杂度降为 O(1)。
Morris 遍历算法整体步骤如下(假设当前遍历到的节点为 x):
- 如果 x 无左孩子,先将 xx 的值加入答案数组,再访问 x 的右孩子,即 x = x.right。
- 如果 x 有左孩子,则找到 x 左子树上最右的节点(即左子树中序遍历的最后一个节点,x 在中序遍历中的前驱节点),我们记为 predecessor。根据 predecessor 的右孩子是否为空,进行如下操作。
- 如果 predecessor 的右孩子为空,则将其右孩子指向 x,然后访问 x 的左孩子,即 x = x.left。
- 如果 predecessor 的右孩子不为空,则此时其右孩子指向 x,说明我们已经遍历完 xx 的左子树,我们将 predecessor 的右孩子置空,将 x 的值加入答案数组,然后访问 x 的右孩子,即 x = x.right。
- 重复上述操作,直至访问完整棵树。
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
| class Solution { public List<Integer> inorderTraversal(TreeNode root) { List<Integer> res = new ArrayList<Integer>(); TreeNode predecessor = null;
while (root != null) { if (root.left != null) { predecessor = root.left; while (predecessor.right != null && predecessor.right != root) { predecessor = predecessor.right; } if (predecessor.right == null) { predecessor.right = root; root = root.left; } else { res.add(root.val); predecessor.right = null; root = root.right; } } else { res.add(root.val); root = root.right; } } return res; } }
|
复杂度分析
- 时间复杂度:O(n),其中 nn 为二叉搜索树的节点个数。Morris 遍历中每个节点会被访问两次,因此总时间复杂度为 O(2n)=O(n)。
- 空间复杂度:O(1)。